国家公务员考试网
地区网站:
考试类别:
您的当前位置:首页 > 行测辅导 > 其他 > 2017年公务员考试行测指导:“3”和“9”的整除思想

2017年公务员考试行测指导:“3”和“9”的整除思想

2017-08-03 11:31:30 字号: | | 推荐课程 公务员考试快速答题技巧大揭秘
  行测考试具有题量大,时间短等特点,所以在考试的过程中,往往时间就是分数,技巧决定命运。尤其在其中数量关系这一块的考题中往往体现得更为明显,“不是我不会做,而是不能做,因为会占用我很多的时间,准确率也是极低极低的”,所以选择放弃的考生也非常的多,实际上在数量关系中还是有很多的解题技巧的,整除可以化繁为简,把计算的问题转化为判断和挑选的过程。
  
  一、整除的概念
  
  两个数相除,被除数、除数以及商都为整数,没有余数,就叫做整除。
  
  二、3和9的整除特性
  
  方法一:各位数字加和法
  
  一个数能够被3整除,必须满足这个数的各位数字之和是3的倍数,同理,能被9整除的数,也必须满足各位数字之和能够被9整除。例如:12345能被3整除,但不能被9整除,因为1+2+3+4+5=15,15是3的倍数,所以12345除以3能够整除,但15不是9的倍数,所以12345除以9不能够整除。
  
  方法二:“消三法”和“消九法”
  
  所谓“消三法”就是看到3以及3的倍数我们就给它消掉,如果全部消掉,没有剩余,说明该数能够被3整除,如果有剩余说明该数不能够被3整除并且能够判定余数;判断9同理。我们看1+2+3+4+5的和,1+2、3、4+5都能直接被3整除,那么我们直接忽略他们,也就是直接消掉,因为都能够消掉,就说明12345是3的倍数,能够整除。如果判断9,则,4+5是9的倍数可以消掉,而剩下的1+2+3=6消不掉,就说明12345不是9的倍数并且除以9余6。
  
  【例1】某人出生于 20 世纪 70 年代,某年他发现从当年起连续 10 年自己的年龄均与当年年份数字之和相等(出生当年算 0 岁)。问他在以下哪一年时,年龄为 9 的整数倍?
  
  A.2006 年 B.2007 年 C.2008 年 D.2009 年
  
  解析:因为“从当年起连续10年自己的年龄均与当年年份数字之和相等”,则其中必有一个年份与年龄均能被9整除,即各位数字之和能被9整除,则年龄又被9整除时,年份也能被9整除,结合选项,只有B符合,选B。
  
  【例2】某单位招录了10名新员工,按其应聘成绩排名1到10,并用10个连续的四位自然数依次作为他 们的工号,凑巧的是每个人的工号都能被他们的成绩排名整除,问排名第三的员工工号所有数字之和是多少?
  
  A.9 B.12 C.15 D.18
  
  解析:排名第三的员工工号能被3整除,则排名第三的员工工号所有数字之和应该能被3整除,这个结论不能排除任何一个选项。再根据10名新员工的工号是10个连续的四位自然数,说明排名第三的员工工号加上6后就是排名第九的员工工号,也就是说,排名第三的员工工号所有数字之和再加上6后一定能被9整除,只有12满足,答案是B。
  
  公务员考试网希望考生们通过上述内容能更全面地了解数量关系中的整除思想,为快速、准确地解题奠定基础。
地方公务员考试
在线课程
国考专题
我要提问
返回顶部